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Abstract—The clustering attachment (CA) model proposed by Bagrow and Brockmann in 2013
may be used as an evolution tool for undirected random networks. A general definition of the
CA model is introduced. Theoretical results are obtained for a new CA model that can be
treated as the former’s limit in the case of the model parameters α → 0 and ǫ = 0. This
study is focused on the triangle count of connected nodes at an evolution step n, an important
characteristic of the network clustering considered in the literature. As is proved for the new
model below, the total triangle count ∆n tends to infinity almost surely as n → ∞ and the
growth rate of E∆n at an evolution step n > 2 is higher than the logarithmic one. Computer
simulation is used to model sequences of triangle counts. The simulation is based on the
generalized Pólya–Eggenberger urn model, a novel approach introduced here for the first time.
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1. INTRODUCTION

Random graphs are used to model real-world networks [1]. These are graphs in which the node
connectivity structure is random due to the dynamics (evolution) of networks over time. Random
graphs can be described by a probabilistic distribution or random process that generates them [1–3].
One example of a random graph is the Erdös–Rényi graph, where an edge between any two different
graph vertices appears with some fixed probability p, independent of the other pairs of vertices.

This paper is devoted to the clustering attachment (CA) rule proposed in [4]. It can be used as an
evolution model of undirected local random networks when nodes belong to a certain community.
The idea behind CA is that a newly appending node chooses existing nodes not with a high
number of links but on the basis of their belonging to strongly connected groups of nodes (a typical
example is the social behavior of people) and attaches to these nodes with new edges. CA is
intended to model local networks, not leading to the emergence of nodes with a large number of
links, in contrast to the preferential attachment (PA) implementing the so-called “rich-get-richer”
models. In accordance with CA, a new node connects to m > 2 existing nodes. For example, in
social networks, individuals may have friends not among popular people but in their neighborhood,
forming close communities. CA may fit the development management model of a region without
large metropolises or a model of society with an approximately equal distribution of benefits, under
which the enrichment of individual nodes becomes impossible. CA can be used in medicine when
modeling the evolution of brain neural networks and in biology when modeling communication in
animal packs [4].
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1096 VAIČIULIS, MARKOVICH

The model proposed in [4] describes the attachment of a new node to an existing node i with a
probability proportional to its clustering coefficient ci,n at an evolution step n :

PCA(i, n) ∝ cαi,t + ǫ, (1)

where the clustering coefficient of node i ∈ Vn is defined by

ci,n =

{

0, Di,n = 0 or Di,n = 1
2∆i,n/ (Di,n (Di,n − 1)) , Di,n > 2,

Di,n is the degree of node i (the number of its links to other nodes), ∆i,n is the number of triangles
of node i, and 0 6 ǫ 6 1 and α > 0 are model parameters.1 As a rule, the connection of a newly
appending node to existing nodes by the CA reduces its clustering coefficient [4]. Despite that CA
leads to numerous new phenomena (community formation around new nodes, modularity bursts,
and light-tailed distributions of node degrees, see [4]), it was not further developed. Many results
in [4] were not rigorously established, such as the proof of light-tailed distributions of node degrees
and the cluster structure of modularity; they are important for analyzing the connectivity of network
nodes.

This paper aims to theoretically investigate a more general CA model than the original one [4]
in the case of the model parameters α → 0 and ǫ = 0. This model reduces to successively choos-
ing m > 2 existing nodes included in the triangles by a newly appending node at each evolution
step. Note that the numbers of nodes and edges in the graph are nonrandom, and randomness is
introduced by choosing an existing node with a probability proportional to its weight.

A triangle of connected nodes is the most studied subgraph, which can be considered as a basic
community. Perhaps, it was first introduced in [5]. Also, the triangle count serves to calculate
the clustering coefficient, an important characteristic of the clustering structure of random graphs
expressing the fraction of connected neighbors of a node. The limit behavior of the triangle count
of nodes attracts the attention of many researchers; for example, see [6–8]. In this paper, we study
the limit behavior of the total triangle counts ∆n in an evolving CA graph as n → ∞ and derive a
lower bound for the expectation E∆n in the proposed CA model, which is a novel result.

The remainder of the paper is organized as follows. Section 2 describes the model under consid-
eration. In Section 3 we discuss the successive choice of existing nodes by a newly appending node.
The main results are presented in Section 4. The results of computer simulation are provided in
Section 5. Section 6 summarizes the findings of this study. All proofs are given in the Appendices.

2. DESCRIPTION OF THE LIMIT MODEL

We denote by Gn = (Vn, En), n = 1, 2, . . . , a sequence of random graphs in which Vn and En

are the sets of nodes and edges, respectively, and n may be interpreted as the discrete time since
graphs are generated during the evolution. The evolution starts from an initial graph G1 in which
the numbers of nodes and edges are fixed. Throughout this paper, we adopt the original notations
from [1], also denoting by #A the cardinality (the number of elements) of an arbitrary finite set A.
For the graph Gn, we have

#Vn = #V1 + n− 1, #En = #E1 +m(n− 1),∀n ∈ N, (2)

where a natural number m > 2 is a parameter of the CA model.

The CA model defined below is more general than the original one [4].

1 The notation x ∝ y means the existence of a nonzero constant C such that x = Cy.
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INVESTIGATION OF TRIANGLE COUNTS IN GRAPHS 1097

Definition 1. The graph Gn+1 is obtained from Gn according to the following two-part rule:

(a) the deterministic part: a new node #V1 + n ∈ Vn+1 \ Vn is appended to Gn;

(b) the stochastic part: each node i ∈ Vn is equipped with the weight

pi,n =
f (ci,n) + ǫ

∑

j∈Vn
(f (cj,n) + ǫ)

, (3)

where f : [0, 1] → [0,∞) is a deterministic nondecreasing attachment function such that

f(0) = 0 (4)

and ǫ > 0 is a parameter of the CA model. The existing nodes i1, . . . , im ∈ Vn are chosen by
successive sampling2 with probabilities proportional to their weights, and each new node #V1 + n
appends to each existing node by only one edge at each evolution step.

By Definition 1, the parameter ǫ is not necessarily bounded above by 1 due to normalization
in formula (3), thereby differing from the CA model [4]. To eliminate the case of no evolution
(Gn = G1, n > 2) from consideration, we assume that the initial graph G1 satisfies the condition

#V1 > m for ǫ > 0 (5)

and
#Ṽ1 > m for ǫ = 0. (6)

Here Ṽn = {i ∈ Vn : ci,n > 0}, n > 1. From (2) and (5) it follows that Vn > m; for ǫ = 0, condi-
tion (6) implies #Ṽn > m for each n ∈ N. Hence, for ǫ > 0 and ∀n ∈ N, there exists at least one
collection of nodes i1, . . . , im ∈ Vn that can be chosen with a positive probability by successive
sampling.

By replacing Di,n with ci,n in (3) and the definitional domain of the function f(x) with {0}∪N,
we obtain the definition of the PA model; see p. 5 in [9]. Substituting

f(x) = xα, α > 0, (7)

into (3) yields the weights (1) for the CA model introduced in [4].

In view of (4), the weights (3) can be written as

pi,n(ǫ) =
1

#Vnǫ+
∑

j∈Ṽn
f (cj,n)

{

ǫ, i ∈ Vn \ Ṽn

f (ci,n) + ǫ, i ∈ Ṽn.
(8)

The value of ǫ determines from which set the nodes i1, . . . , im are chosen by successive sampling:
this is the set Ṽn for ǫ = 0 and the set Vn for ǫ > 0. If ǫ > 0, the inequalities

#Vn > #Ṽn, n > 1, (9)

and formula (8) give the following inequalities for the weights:

1

Cf,ǫ#Vn
6 pi,n(ǫ) 6

Cf,ǫ

#Vn
, n > 1, i ∈ Vn, (10)

where Cf,ǫ = (f(1) + ǫ) /ǫ. Due to (10), pi,n → 0 almost surely (a.s.) as n → ∞. In the case ǫ = 0,
the behavior of the weights pi,n, i ∈ Ṽn, becomes less obvious. Note that pi,n, i ∈ Ṽn, strongly
depend on the positive random value #Ṽn, and the sequence #Ṽ1,#Ṽ2, . . . is formed randomly:
#Ṽn+1 = #Ṽn + 1 is true only if the successively chosen nodes i1, . . . , im ∈ Ṽn contain at least one
pair of nodes connected via an edge from the set En.

2 For m = 2, the successive choice of nodes is described in Section 3.
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Therefore, for ǫ = 0, we consider the CA model with the attachment function

f(x) =

{

0, x = 0
1, x > 0.

(11)

If the attachment function has the form (7) or (11), then Cf,ǫ = (1 + ǫ)/ǫ. Substituting (11)
into (12) yields

pi,n(ǫ) =







ǫ/
(

#Vnǫ+#Ṽn

)

, i ∈ Vn \ Ṽn, Vn \ Ṽn 6= ∅
(1 + ǫ)/

(

#Vnǫ+#Ṽn

)

, i ∈ Ṽn.
(12)

Let us restrict the analysis to the case ǫ = 0, in which the choice of a node from Vn \ Ṽn is
excluded a.s. and the weights of the nodes belonging to the set Ṽn obey the uniform distribution:

pi,n(0) =

{

0, i ∈ Vn \ Ṽn, Vn \ Ṽn 6= ∅
1/#Ṽn, i ∈ Ṽn.

(13)

The sequence of functions fn(x) = x1/n, n = 1, 2, . . . , pointwise converges to f(x) in (11). There-
fore, the CA model with the attachment function (11) and the parameter ǫ = 0 can be treated as
the limit (as α ↓ 0) for the family of CA models with the attachment function (7) and ǫ = 0.

3. SUCCESSIVE UNIFORM SAMPLING OF NODES

Let Gn be an observed graph. The objective of this section is to show that the sets Ẽn and
Ẽn ∩ En are enough to know for the evolution by the CA model. Due to (13), an appended node
#V1 + n can be attached with a positive probability only to existing nodes {i ∈ Vn : ∆i,n > 0}
involved in at least one triangle.

Let the sequence of sets E1, E2, . . . be such that for any n> 1, the pair (Vn, En) is a complete
graph. We denote by Wn a pair of nodes {i1, i2} from Vn that are chosen by successive sampling
(random sampling without replacement). Successive sampling begins with choosing node i1 from Vn

with the probability (13). The probabilities of the remaining #Vn − 1 nodes are then renormalized
using the formula pi,n/(1 − pi1,n). The process is repeated by choosing node i2. The evolution by
the CA model makes no distinction between the first and second nodes in a pair. Therefore, we
will assume that Wn is a two-dimensional random vector with values in En.

Fig. 1. The CA random graph (Vn, En) with n = 5000 (left) and n = 10 000 (right): the nodes from Ṽn are
shown in black, the edges from Ẽn ∩En in dark grey, and the rest of the graph in light grey.
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Proposition 1. The random vector Wn obeys the uniform distribution on the set Ẽn.

According to Proposition 1, the attachment rule (b) with the attachment function (11) and the
parameters ǫ = 0 and m = 2 (see Definition 1) gives no preference to a pair of nodes with relatively
large clustering coefficients. This means the absence of the “rich-get-richer” effect in the CA model
under consideration.

The equality P (Wn = {i, j}) = 0, i, j ∈ Vn \ Ṽn, means that nodes from the set Vn \ Ṽn take no
part in forming the graph Gn+1: the newly appending nodes do not attach to such nodes. With
partitioning the set Vn into the subsets Ṽn and Vn \ Ṽn (active and inactive nodes, respectively),
the CA model can be used to generate various two-class communities.

Example 1. Figure 1 illustrates the classes mentioned above for one realization of the CA ran-
dom graph (Vn, En) with n ∈ {5000, 10 000}, where the initial graph G1 is a quadrilateral with all
diagonals except one:

V1 = {1, 2, 3, 4}, E1 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}}.

4. THE MAIN RESULT

The total triangle count in the graph Gn is expressed through the triangle counts of its nodes:

∆n =
1

3

∑

i∈Ṽn

∆i,n.

Consider the CA model with the parameter ǫ = 0 and the attachment function (11). As was noted
in [4], an empirical study of the CA model with the parameter m > 2 requires bulky calculations
due to complex combinatorics. Therefore, we restrict the analysis to the case m = 2.

Theorem 1. Let Gn, n = 1, 2, . . . , be a sequence of graphs generated by the CA model with the

parameters ǫ = 0 and m = 2 and the attachment function (11). Let the initial graph (V1, E1) be

finite and satisfy condition (6). Then

∆n → ∞ a.s. as n → ∞. (14)

Let the sequence of sets Ẽ1, Ẽ2, . . . be such that for any n > 1,
(

Ṽn, Ẽn

)

is a complete graph.

In other words, Ẽn is the set of all possible edges between nodes from Ṽn. Some edges from Ẽn

may not exist in the graph Gn. Corollary 1 gives a lower bound for the expectation E∆n.

Corollary 1. Under the assumptions of Theorem 1,

E∆n −∆1 >
#

(

Ẽ1 ∩ E1

)

3#Ẽ1

ln(n− 1), n > 2. (15)

5. COMPUTER SIMULATION

In this section, we consider simulation of the sequence ∆n, n > 1. There is no need to simulate
the sequence of graphs Gn, n > 1, to investigate the growth of the sample mean of ∆n: it suffices
to simulate the sequence of sets Ẽn, n > 1.

Let us interpret the unordered pairs of nodes from the set Ẽn in terms of the generalized Pólya–
Eggenberger urn model. For each n > 1, we divide the set Ẽn into two subsets, Ẽn ∩ En and

Ẽn \
(

Ẽn ∩ En

)

. Each unordered pair of nodes from Ẽn ∩En is interpreted as a white ball whereas

a pair of nodes belonging to the set Ẽn \
(

Ẽn ∩ En

)

as a black ball. Hence, the urn (or the set Ẽn)

contains #
(

Ẽn ∩ En

)

white and #
(

Ẽn \
(

Ẽn ∩ En

))

black balls.
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At each step n > 1, a random ball is drawn uniformly from the urn (random sampling
with replacement, see Proposition 1). The color of the ball is inspected and the urn is re-
plenished according to the following rule. If a white ball is drawn, then two white balls and
(

(1/2)

(

1 +
√

1 + 8#Ẽn

)

− 2

)

black balls are added in the urn. The cardinalities #Ṽn and #Ẽn

are related by #Ṽn

(

#Ṽn − 1
)

= 2#Ẽn, see (A.1); therefore, #Ṽn + 1 balls are added in the urn.

If a black ball is drawn, the content of the urn remains unchanged.

Note that the number of added black and/or white balls is fixed in the classical Pólya–
Eggenberger urn model; for example, see [10, p. 437]. In the current model, the number of added
black balls depends on #Ẽn. Other generalizations of the Pólya–Eggenberger urn model can be
found in [12].

Since the pairs of nodes from Ẽn are uniformly distributed (see Proposition 1), we provide a
simple algorithm for simulating the sequence ∆n, n > 1.

Algorithm 1.

1. The initial step. Using an initial graph G1, calculate ∆1, #Ṽ1, #
(

Ẽ1 ∩ E1

)

and

#
(

Ẽ1 \
(

Ẽ1 ∩ E1

))

.

2. The evolutionary step. For any n > 1, simulate the value of the discrete random variable ξn
uniformly distributed on the set {1, . . . ,#Ẽn}. If ξn > #

(

Ẽn ∩En

)

, then

#
(

Ẽn+1 ∩ En+1

)

= #
(

Ẽn ∩ En

)

,

#
(

Ẽn+1 \
(

Ẽn+1 ∩En+1

))

= #
(

Ẽn \
(

Ẽn ∩ En

))

.

If ξn 6 #
(

Ẽn ∩ En

)

, then

#
(

Ẽn+1 ∩ En+1

)

= #
(

Ẽn ∩En

)

+ 2,

#
(

Ẽn+1 \
(

Ẽn+1 ∩ En+1

))

= #Ẽn+1 −#
(

Ẽn+1 ∩ En+1

)

,

where

#Ẽn+1 := #
(

Ẽn ∩ En

)

+#
(

Ẽn \
(

Ẽn ∩ En

))

+ (1/2)

(

1 +
√

1 + 8#Ẽn+1

)

.

In both cases,

∆n+1 = ∆1 −#Ṽ1 + (1/2)

(

1 +
√

1 + 8#Ẽn+1

)

.

Note that when implementing this algorithm, one needs to store the four values: ∆1, #Ṽ1,

#
(

Ẽn ∩ En

)

, and #
(

Ẽn \
(

Ẽn ∩En

))

.

For each initial graph G1, 100 independent sequences ∆
(j)
1 , . . . ,∆

(j)
N of length N = 106 were

simulated; the upper index (j) denotes the sequence number. The following complete graphs were
selected as the initial ones: 1) the triangle G1,1, 2) the complete graph G1,2 with 17 vertices, and
3) the complete graph G1,3 with 51 vertices.

The sequence of the sample means ∆̄n(G1,ℓ), 1 6 n 6 N, was calculated by the formula

∆̄n(G1,ℓ) =
1

100

100
∑

j=1

∆(j)
n

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 11 2024
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Fig. 2. The plots of
{(

n, ∆̄n(G1,ℓ)−∆1(G1,ℓ)
)

, 0 6 n 6 106
}

, where the curves with ℓ ∈ {1, 2, 3} are shown
in black, dotted black, and light grey.

for each initial graph G1,ℓ. Figure 2 shows the plots of {(n, ∆̄n(G1,ℓ)−∆1(G1,ℓ)), 1 6 n 6 N},
where ℓ ∈ {1, 2, 3} and N = 106. The calculations were carried out in 152.88 s.

The least squares method was applied to approximate the discrete data
{

(

n, ∆̄n(G1,ℓ)−∆1(G1,ℓ)
)

, 2× 105 6 n 6 N
}

,
{

(

n, ∆̄n(G1,ℓ)−∆1(G1,ℓ)
)

, 5× 105 6 n 6 N
}

by the function ϕ(n) = c1 + c2n
c3 . The estimates of c1, c2, and c3 are presented in the table below.

The estimates of the parameters c1, c2, and c3

2× 105 6 n 6 106 5× 105 6 n 6 106

Initial graph ĉ1 ĉ2 ĉ3 Initial graph ĉ1 ĉ2 ĉ3
G0,1 1 2.827 0.499 G0,1 1 2.831 0.499
G0,2 680 3.179 0.492 G0,2 680 3.234 0.491
G0,3 20 825 6.564 0.447 G0,3 20 825 6.133 0.452

Based on the simulation, we have the following findings of this study.
1. The simulation results in Fig. 2 are sufficiently close to the theoretical ones. Indeed, E∆n

and the empirical mean ∆̄n grow with increasing n; see Corollary 1 and Fig. 2.
2. The value ∆̄n grows as C

√
n, where 2× 105 6 n 6 106; see the table. This simulation result

does not contradict Corollary 1. Note that this simulation result does not imply the same
(or close) growth rate of ∆̄n for n > 106.

3. Due to the limited computer memory, difficulties arose when simulating the triangle count ∆n

for n > 106.
4. The plots of

(

n, ∆̄n(G1,1)−∆1(G1,1)
)

and
(

n, ∆̄n(G1,2)−∆1(G1,2)
)

are close to each other,
whereas the plot of

(

n, ∆̄n(G1,3)−∆1(G1,3)
)

has a shift along the vertical axis relative to the
other two plots for 0 6 n 6 106, which is perhaps due to the size of the graph G1,3. It can be
hypothesized that the influence of a relatively large initial graph should be eliminated with a
large n.
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6. CONCLUSIONS

By analogy with [9], where a rather wide definition of PA evolution models was given, this
paper has introduced a new generalized CA model. The class of attachment functions covered by
Definition 1 is wide enough to simulate the evolution of many random systems and networks in
which newly appending nodes choose existing nodes not with a high number of links but on the
basis of their belonging to strongly connected groups of nodes.

The theoretical properties of the limit CA model have been investigated. In this model, new
nodes connect to two existing nodes by successive choice (random sampling without replacement)
with probabilities inversely proportional to the number of nodes involved in triangles. The new
model can be treated as the limit of the original CA model [4] as the parameter α → 0 in the case
ǫ = 0 and the attachment function (11). Due to the specifics of the weights (3), the cases ǫ > 0
and ǫ = 0 must be studied separately.

The main results of the paper concern the case ǫ = 0. According to Theorem 1, the total triangle
count ∆n tends to infinity a.s. as the evolution step n → ∞. The initial graph must contain at
least m nodes as part of triangles to start the evolution. Corollary 1 shows that the growth rate
of the expected triangle count E∆n is higher than the logarithmic one for an evolution step n > 2.
The simulation results do not contradict the theoretical considerations. Refining the upper and
lower bounds for E∆n will be the aim of further research.
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APPENDIX A

Proof of Proposition 1. Let {i, j} ∈ Ẽn. Consider for each node i ∈ Ṽn the random event
An,i ≡ {node i is chosen}. By the total probability law,

P (Wn = {i, j}) = P (An,j|An,i)P (An,i) + P (An,i|An,j)P (An,j)

=
2

#Ṽn

(

#Ṽn − 1
) =

1

#Ẽn

. (A.1)

Using (A.1), we obtain

P
(

Wn ∈ Ẽn

)

=
∑

{i1,i2}∈Ẽn

P (Wn = {i1, i2}) = 1.

Hence, it follows that P
(

Wn ∈ En \ Ẽn

)

= 0, and consequently, P (Wn = {i, j}) = 0 for any pair

of nodes {i, j} ∈ En \ Ẽn.

APPENDIX B

We represent the set of edges En, n > 1, as the set of unordered pairs of nodes. For any n > 1

we divide the set Ẽn into the subsets Ẽn ∩ En and Ẽn \
(

Ẽn ∩ En

)

. The subset Ẽn ∩ En consists

of the unordered pairs of nodes connected via edges in the graph Gn. Let Bn = {Wn ∈ Ẽn ∩En},
n > 1, be a random event that an unordered pair of nodes Wn chosen by successive sampling is
connected via an edge from En.
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INVESTIGATION OF TRIANGLE COUNTS IN GRAPHS 1103

We denote by Bc the event complementary to B. Let n, k ∈ N and ℓ ∈ N ∪ {0} be such that
n > 2, 1 6 k < n, and 0 6 ℓ 6 n− k. The event (Bk ∩ · · · ∩Bn−1)ℓ is the union of (n− k)!/(ℓ!(n−
k − ℓ)!) nonintersecting random events such that ℓ events Bj are replaced by their complementary
ones in the intersection Bk ∩ · · · ∩ Bn−1. If the random event (Bk ∩ · · · ∩Bn−1)ℓ occurs, then ℓ
pairs of nodes among Wk, . . . ,Wn−1 are not connected, whereas the remaining (n− k− ℓ) pairs are
connected. For example, for k = 1 and n = 4 we have

ℓ = 0 : (B1 ∩B2 ∩B3)0 = B1 ∩B2 ∩B3,

ℓ = 1 : (B1 ∩B2 ∩B3)1 = (B1 ∩B2 ∩Bc
3) ∪ (B1 ∩Bc

2 ∩B3) ∪ (Bc
1 ∩B2 ∩B3),

ℓ = 2 : (B1 ∩B2 ∩B3)2 = (B1 ∩Bc
2 ∩Bc

3) ∪ (Bc
1 ∩B2 ∩Bc

3) ∪ (Bc
1 ∩Bc

2 ∩B3),

ℓ = 3 : (B1 ∩B2 ∩B3)3 = Bc
1 ∩Bc

2 ∩Bc
3.

By Proposition 1,

P (Bn) =
∑

{i1,i2}∈Ẽn∩En

1

#Ẽn

=
#

(

Ẽn ∩ En

)

#Ẽn

. (B.1)

Let n> k − 1 and k> 1. If the random event (Bk∩ · · · ∩Bn−1)ℓ occurs, then

#
(

Ẽn ∩ En

)

= #
(

Ẽk ∩Ek

)

+ 2(n− ℓ− k),

#Ẽn = #Ẽk + (n− ℓ− k)#Ṽk + (1/2)(n − ℓ− k)(n − ℓ− k − 1).

In this case, from (B.1) it follows that

P (Bn| (Bk ∩ · · · ∩Bn−1)ℓ) = pn−ℓ (Gk) ,

where

pn (Gk) =
#

(

Ẽk ∩ Ek

)

+ 2(n− k)

#Ẽk + (n− k)#Ṽk + (1/2)(n − k)(n − k − 1)
. (B.2)

Now we establish the inequalities that will be used for proving Theorem 1.

Lemma 1. Under the assumptions of Theorem 1,

pn (Gk) > 0, (B.3)

pn (Gk) > pn+1 (Gk) (B.4)

for any natural numbers k 6 n.

Proof of Lemma 1. By Proposition (6), Ẽk 6= ∅ and Ẽk ∩ Ek 6= ∅ for any natural number k.
Therefore, (B.2) implies (B.3).

Next, based on (B.2), inequality (B.4) is reduced to

#Ṽk

{

#
(

Ẽk ∩Ek

)

−#Ṽk + 1
}

+ (n − k)#
(

Ẽk ∩ Ek

)

+ (n− k)(n− k + 1) > 0.

It suffices to show that, for any initial graph satisfying (6),

#
(

Ẽk ∩ Ek

)

> #Ṽk − 1. (B.5)

We will prove (B.5) by induction. Consider the graph
(

Ṽ1, Ẽ1 ∩ E1

)

. The minimum number of

edges in Ẽ1 ∩ E1 depends on #Ṽ1. If #Ṽ1 = 3, then the graph with the minimum number of

edges is a triangle for which #
(

Ẽ1 ∩E1

)

= 3. Hence, (B.5) holds for k = 1 in the case #Ṽ1 = 3.
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If #Ṽ1 > 3, then the graph with the minimum number of edges consists of #Ṽ1 − 2 triangles with

one common side (see Example 1 for #Ṽ1 = 4). For such graphs, we have #
(

Ẽ1 ∩ E1

)

= #Ṽ1 + 1.

This means that (B.5) with k = 1 and #Ṽ1 > 3 is valid as well.

Now we make the inductive hypothesis that (B.5) is true for k. Under this hypothesis, it is

necessary to show (B.5) for (k + 1). If the random event Bk occurs, then #
(

Ẽk+1 ∩Ek+1

)

=

#
(

Ẽk ∩ Ek

)

+ 2 and #Ṽk+1 = #Ṽk + 1. Using (B.5), we obtain

#
(

Ẽk+1 ∩ Ek+1

)

−#Ṽk+1 + 1 =
{

#
(

Ẽk ∩ Ek

)

−#Ṽk + 1
}

+ 1 > 0.

The case in which the event Bk does not occur can be considered by analogy.

Lemma 2. Under the assumptions of Theorem 1,

P (Bn) > P (Bn|B1 ∩ · · · ∩Bn−1) , n = 2, 3, . . . . (B.6)

Proof of Lemma 2. By the total probability law,

P (Bn) =
n−1
∑

ℓ=0

P (Bn| (B1 ∩ · · · ∩Bn−1)ℓ)P ((B1 ∩ · · · ∩Bn−1)ℓ) .

From Lemma 1 it follows that

P (Bn|B1 ∩B2 ∩ · · · ∩Bn−1) < P (Bn| (B1 ∩B2 ∩ · · · ∩Bn−1)ℓ)

for any 1 6 ℓ 6 n− 1. With this inequality, we obtain

P (Bn) > P (Bn|B1 ∩ · · · ∩Bn−1)
n−1
∑

ℓ=0

P ((B1 ∩ · · · ∩Bn−1)ℓ) .

Since the last sum is 1, we finally arrive at (B.6).

Theorem 1 is proved by verifying the conditions of the Borel–Cantelli lemma; see below.

Lemma 3 [10, p. 79]. Let random events C1, C2, . . . defined on the same probability space satisfy

the correlation condition: for any natural numbers u and v such that u 6= v, the random events Cu

and Cv are negative correlated or uncorrelated. If
∑∞

n=1 P (Cn) = ∞, then P{Cn i.m.} = 1.3

Lemma 4. Under the assumptions of Theorem 1, random events B1, B2, . . . satisfy the correla-

tion condition:

P (Bu ∩Bv) 6 P (Bu)P (Bv) . (B.7)

Proof of Lemma 4. If min{u, v} = 1, then assumption (6) implies 0 < #
(

Ẽ1 ∩ E1

)

6 #
(

Ẽ1

)

,

see the proof of Lemma 1. In this case, from (B.1) it follows that P (B1) > 0. If min{u, v} > 1,

then combining (B.3) and (B.6) gives P
(

Bmin{u,v}

)

> pmin{u,v}(G1) > 0. Thus, we have proved that

P
(

Bmin{u,v}

)

> 0 for any natural numbers u and v. With the conditional probability formula, the

correlation condition (B.7) can be written as

P
(

Bmax{u,v}

)

− P
(

Bmax{u,v}|Bmin{u,v}

)

> 0. (B.8)

It suffices to show inequality (B.8) for max{u, v} = n + k and min{u, v} = n, where n and k are
any natural numbers.

3 Here, {Cn i.m.} denotes the event consisting in the occurrence of infinitely many events from C1, C2, . . . [11].
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If k = 1, then applying the total probability formula together with (B.4) yields

P (Bn+1)− P (Bn+1|Bn) = (1− p1(Gn)) (p1(Gn)− p2(Gn)) > 0.

Here the equality holds for #
(

Ẽn ∩ En

)

= #
(

Ẽn

)

.

Now let k > 2. We state that

P (Bn+k) = J +
k−1
∑

ℓ=0

pn+k−ℓ−1(Gn)P (Bc
n ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ), (B.9)

P (Bn+k|Bn) = J +
k−1
∑

ℓ=0

pn+k−ℓ(Gn)P (Bc
n ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ), (B.10)

where

J =
k−1
∑

ℓ=0

pn+k−ℓ(Gn)P (Bn ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ) .

From (B.9) and (B.10) it immediately follows that the difference P (Bn+k)− P (Bn+k|Bn) is

k−1
∑

ℓ=0

{pn+k−ℓ−1(Gn)− pn+k−ℓ(Gn)}P (Bc
n ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ)

=
k−1
∑

ℓ=0

{pn+k−ℓ−1(Gn)− pn+k−ℓ(Gn)} {1− pn−ℓ(Gn)}P ((Bn+1 ∩ · · · ∩Bn+k−1)ℓ) .

Due to (B.3) and (B.4), the latter sum is positive.

Let us prove (B.9). Applying the total probability formula gives

P (Bn+k) = P (Bn+k| (Bn ∩ · · · ∩Bn+k−1)0)P ((Bn ∩ · · · ∩Bn+k−1)0)

+
k−1
∑

ℓ=1

P (Bn+k| (Bn ∩ · · · ∩Bn+k−1)ℓ)P ((Bn ∩ · · · ∩Bn+k−1)ℓ)

+P (Bn+k| (Bn ∩ · · · ∩Bn+k−1)k)P ((Bn ∩ · · · ∩Bn+k−1)k) .

Using the identity

(Bn ∩ · · · ∩Bn+k−1)ℓ = {Bn ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ}
∪
{

Bc
n ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ−1

}

,

we obtain

P (Bn+k) =

{

P (Bn+k|Bn ∩ · · · ∩Bn+k−1)P (Bn ∩ · · · ∩Bn+k−1)

+
k−1
∑

ℓ=1

P (Bn+k| (Bn ∩ · · · ∩Bn+k−1)ℓ)P (Bn ∩ (Bn+1 · · · ∩Bn+k−1)ℓ)

}

+
k−1
∑

ℓ=1

P (Bn+k| (Bn ∩ · · · ∩Bn+k−1)ℓ)P
(

Bc
n ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ−1

)

+ P
(

Bn+k|Bc
n ∩ · · · ∩Bc

n+k−1

)

P
(

Bc
n ∩ · · · ∩Bc

n+k−1

)

.
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In view of (B.2), the sum in curly brackets is J . Replacing the summation variable with s = ℓ− 1,
we obtain

k−1
∑

ℓ=1

P (Bn+k| (Bn ∩ · · · ∩Bn+k−1)ℓ)P
(

Bc
n ∩ (Bn+1 · · · ∩Bn+k−1)ℓ−1

)

=
k−2
∑

s=0

P
(

Bn+k| (Bn ∩ · · · ∩Bn+k−1)s+1

)

P (Bc
n ∩ (Bn+1 · · · ∩Bn+k−1)s)

=
k−1
∑

s=0

P
(

Bn+k| (Bn ∩ · · · ∩Bn+k−1)s+1

)

P (Bc
n ∩ (Bn+1 · · · ∩Bn+k−1)s)

−P (Bn+k| (Bn ∩ · · · ∩Bn+k−1)k)P
(

Bc
n ∩ (Bn+1 · · · ∩Bn+k−1)k−1

)

.

Using (B.2) once more, we finally arrive at (B.9).

Identity (B.10) can be verified similarly. To this end, it suffices to apply the total probability
formula and the identity

(Bn+1 ∩ · · · ∩Bn+k−1)ℓ = {Bn ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ}
∪ {Bc

n ∩ (Bn+1 ∩ · · · ∩Bn+k−1)ℓ} .

Proof of Theorem 1. The difference of the total triangle counts in the graphs Gn and G1, as
well as the difference of the numbers of nodes involved in the triangles, can be expressed through
the indicators of random events Bj as follows:

∆n −∆1 =
n−1
∑

j=1

I {Bj} , (B.11)

#Ṽn −#Ṽ1 =
n−1
∑

j=1

I {Bj} , n > 2, (B.12)

where I {·} denotes the indicator of a corresponding event. From (B.11) and (B.12) it follows that
the triangle count ∆n is a linear function of the cardinality of the set Ṽn:

∆n = #Ṽn +
(

∆1 −#Ṽ1

)

, n > 2. (B.13)

Due to (B.11), the convergence (14) is immediate from

n−1
∑

j=1

I {Bj} → ∞ a.s. as n → ∞,

which is equivalent to

P (Bn i.m.) = 1.

Finally, we prove that the sequenceB1, B2, . . . satisfies the assumptions of the Borel–Cantelli lemma
(see Lemma 3). One of them has been verified in Lemma 4. It suffices to establish

∞
∑

n=1

P (Bn) = ∞. (B.14)
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By Lemmas 1 and 2,
∞
∑

n=1

P (Bn) >
∞
∑

n=3

pn(G1).

Note that (B.2) implies

pn(G1) >
#

(

Ẽ1 ∩ E1

)

+ 2(n − 1)

n#Ẽ1 + (1/2)(n − 1)(n − 2)
. (B.15)

The inequality #
(

Ẽ1 ∩E1

)

6 #Ẽ1 can be used to show that the right-hand side of (B.15) exceeds

#
(

Ẽ1 ∩ E1

)

/
((

3#Ẽ1

)

(n− 2)
)

for n > 3. Hence,

∞
∑

n=1

P (Bn) >
#

(

Ẽ1 ∩ E1

)

3#Ẽ1

lim
N→∞

HN ,

where HN =
∑N

n=1 1/n. The relation (B.14) follows by applying the inequality HN > ln(N) and
the limit relation limN→∞ ln(N) = ∞.

To establish Corollary 1, we note that (B.11) implies

E (∆n)−∆1 =
n−1
∑

j=1

P (Bj) >
n+1
∑

j=3

pj(G1), n > 2.

From the proof of (B.14) it follows that the latter sum is greater than (#(Ẽ1∩E1)/(3#Ẽ1)) ln(n−1).
Therefore, we arrive at the desired inequality (15).
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